
ℓ∞-ROBUSTNESS AND BEYOND:
UNLEASHING EFFICIENT ADVERSARIAL TRAINING

HADI M. DOLATABADI, SARAH ERFANI, AND CHRISTOPHER LECKIE
SCHOOL OF COMPUTING AND INFORMATION SYSTEMS, THE UNIVERSITY OF MELBOURNE

ABSTRACT
• Motivation: adversarial training (AT) is one of the most successful ap-

proaches to defend deep neural networks (DNN) against adversarial at-
tacks. Unfortunately, AT is time-consuming as we need to generate ad-
versarial attacks for the entire training data in each iteration.

• Proposal: we propose adversarial coreset selection to decrease the training
data population and run AT on this smaller subset of data.

• Key Features of Adversarial Coreset Selection:

1. A principled method that can be used along various AT objectives.

2. Compatible with existing efficient AT methods.

3. Speeding up AT by 2-3 times while experiencing a slight reduction in
the clean and robust accuracy.

BACKGROUND: ADVERSARIAL TRAINING
• In contrast to vanilla training that uses the raw data samples to train a

DNN, we use adversarial examples to perform adversarial training:

C
le

an
D

at
a

... ...

...

...

DNN

Vanilla Training

Raw Training Data

A
dv

er
sa

ri
al

D
at

a

Adversarial Training Data

Adversarial
Attack

Adversarial
Training

• We can have different AT methods depending on how adversarial exam-
ples are generated. Since the network state changes during the training,
each adversarial example needs to be generated using the DNN at that
particular step. As such, one of the main disadvantages of AT is its speed.

BACKGROUND: CORESET SELECTION
• Coreset selection aims at finding a weighted subset of the data that can

approximate certain behaviors of the entire data samples.

• In particular, let us denote the behavior of interest as a function B(·, ·)
that receives a set and its associated weights.

• The goal of coreset selection is to move from the original data V with
uniform wights 1 to a weighted subset S∗ ⊆ V with weights γ∗ such
that:

B(V,1) ≈ B(S∗,γ∗).

OUR METHOD: ADVERSARIAL CORESET SELECTION

• To train a DNN fθ over the dataset V , we first define an objective:

L(θ) :=
∑
i∈V

Φ (xi, yi; fθ) .

• Different choices of Φ amount to different training objectives:

1. Vanilla Training: Φ := LCE (fθ(x), y)

2. Adversarial Training: Φ := maxx̃:d(x̃,x)≤ε LCE (fθ(x̃), y)

• Since the loss gradient determines the learning procedure, if we can find
a good approximation to the gradient using a subset of the entire data,
we can replace the training data with that subset.

• In particular, we set our behavior of interest B(A,w) to:

B(A,w) :=
∑
i∈A

wi∇θΦ (xi, yi; fθ) .

• We want to find a coreset S∗ ⊆ V with weights γ∗ such that:

Selection
Coreset

B(V,1) B(S∗,γ∗)≈

• To this end, we first take the DNN gradient and then use existing greedy
selection algorithms to find the coreset S∗.

• For vanilla training, the first step is equal to finding the DNN’s gradient.
For adversarial training, however, we resort to Danskin’s theorem and
take the gradient of a maximization objective, which requires finding an
adversarial example and then computing the gradient for this point.

• Our final approach:

Start
C

oreset
Selection

C
oreset

Selection

· · ·

C
oreset

Selection

Finish
Twarm epochs of

full training

T epochs of

subset training

T epochs of

subset training

(a) Selection is done every T epochs. During the next episodes, the network is only
trained on this subset.

Gradient
Comput.

Greedy
Selection

(b) Coreset selection module for
vanilla training.

Advers.
Attack

Gradient
Comput.

Greedy
Selection

(c) Coreset selection module for
adversarial training.

Overview of DNN training using coreset selection.

EXPERIMENTAL RESULTS
1. Accelerating Adversarial Training:

O
bj

ec
.

D
at

a

Training Scheme
Performance Measures

↑ Clean Acc. (%) ↑ Robust Acc. (%) ↓ Time (mins)

T
R

A
D

ES

C
IF

A
R

-1
0 Adv. CRAIG (Ours) 83.03 (−2.38) 41.45 (−2.74) 179.20 (−165.09)

Adv. GRADMATCH (Ours) 83.07 (−2.34) 41.52 (−2.67) 178.73 (−165.56)

Full Adv. Training 85.41 44.19 344.29

ℓ ∞
-P

G
D

C
IF

A
R

-1
0 Adv. CRAIG (Ours) 80.37 (−2.77) 45.07 (+3.68) 148.01 (−144.86)

Adv. GRADMATCH (Ours) 80.67 (−2.47) 45.23 (+3.84) 148.03 (−144.84)

Full Adv. Training 83.14 41.39 292.87

• Takeaway 1: Our approach results in 2-3 times faster training while
decreasing the clean and robust accuracy slightly.

• Takeaway 2: Our approach is compatible with different objectives
and greedy coreset selection algorithms.

2. Fast Adversarial Training using ACS:

Training Scheme ↑ Clean Acc. (%) ↑ Robust Acc. (%) ↓ Speed (min/epoch)

Fast Adv. Training 86.20 47.54 0.5178

+ Adv. GRADMATCH (Ours) 82.53 (−3.67) 47.88 (+0.34) 0.2737

• Takeaway 3: Our approach is complementary to existing methods
that accelerate adversarial training.

3. Ablation Study (Robust Error vs. Speed-up):

1 2 4 8
Speed-up

0

5

10

Re
la

tiv
e

R
ob

us
t

Er
ro

r(
%

)

Random
Adv. GradMatch
Full TRADES

Coreset Size
c = 0.5 c = 0.4 c = 0.3 c = 0.2 c = 0.1

Warmstart
Epochs (c = 0.5)

Tw = 5
Tw = 10
Tw = 15
Tw = 20
Tw = 25
Tw = 30

• Takeaway 4: Our method performs better than a random se-
lection of data!

CODE AND CONTACT INFORMATION

Twitter hmdolatabadi
Website hmdolatabadi.github.io
Repo. github.com/hmdolatabadi/ACS


