

ABSTRACT

- **Motivation**: poisoned training data can create backdoors in deep neural networks (DNN) so the model misclassifies samples with a pre-designed trigger. Existing robust methods need to train the DNN twice so they can filter out the poisoned data, but this is time-consuming.
- **Proposal**: we propose COLLIDER, a COreset selection algorithm with LocaL Intrinsic DimEnisonality Regularization, to filter out suspicious samples in an online manner and train the DNN over the clean data.

• Key Features of COLLIDER:

- 1. Efficient, single-run training of DNNs against backdoor data.
- 2. Compatible against various backdoor attacks.
- 3. Eliminating the effects of backdoor attacks almost entirely without requiring a clean validation set.

BACKGROUND: BACKDOOR ATTACKS

• By attaching a trigger to training images, attackers can create backdoors in DNNs and exploit them during inference.

(a) Training the DNN over poisoned data.

(b) Expected behavior at test-time in the absence and presence of the trigger.

COLLIDER: A ROBUST TRAINING FRAMEWORK FOR BACKDOOR DATA HADI M. DOLATABADI, SARAH ERFANI, AND CHRISTOPHER LECKIE SCHOOL OF COMPUTING AND INFORMATION SYSTEMS, THE UNIVERSITY OF MELBOURNE

BACKGROUND: CORESET SELECTION

- Coreset selection aims at finding a *weighted subset* of the data that can approximate certain behaviors of the entire data samples.
- In particular, let us denote the behavior of interest as a function $\mathcal{B}(\cdot, \cdot)$ that receives a set and its associated weights.
- The goal of coreset selection is to move from the original data \mathcal{V} with uniform wights 1 to a weighted subset $S^* \subseteq V$ with weights γ^* such that:

BACKGROUND: LID

- Traditionally, classical expansion models such as generalized expansion dimension (GED) were used to measure the intrinsic dimensionality of the data.
- By extending the aforementioned setting into a statistical one, classical expansion models can provide a local view of intrinsic dimensionality (LID).

Overview of LID (based on Figure 1 in [1]). As shown, the random distance variables **x** and **y** have an approximately equal cumulative distribution at distance *r*. However, since the concentration of points for y at distance r is higher than x, then $LID_{F_{\mathbf{v}}}(r)$ is greater than $LID_{F_{\mathbf{x}}}(r)$.

- Here:

OUR METHOD: COLLIDER

• Motivation: using coreset selection to filter out the poisonous samples.

• To this end, we need to define an appropriate coreset selection objective.

• We perform this noticing two properties of the poisoned data:

1. Gradient Space Properties: the gradient updates computed on poisoned data (a) have comparably larger ℓ_2 norm [2], and (b) are scattered in the gradient space [3].

(a) Distribution of the neural epochs of training.

(b) t-SNE plot of a network gradient norm after 3 randomly initialized neural network gradient.

2. LID Properties: a neighborhood with higher dimensionality is needed to shelter poisoned samples compared to the clean data [4].

(b) LID distribution for a single run.

• Based on the mentioned properties of the poisoned data, we define a coreset selection objective:

$$\mathcal{S}^{*}(\boldsymbol{\theta}) \in \operatorname*{arg\,min}_{\mathcal{S}\subseteq \mathcal{V}, |\mathcal{S}|\leq k} \sum_{i\in \mathcal{V}} \min_{j\in \mathcal{S}} d_{ij}(\boldsymbol{\theta}) + \lambda \mathrm{LID}(\boldsymbol{x}_{j}).$$

1. $d_{ij}(\boldsymbol{\theta}) = \|\nabla \ell_i(\boldsymbol{\theta}) - \nabla \ell_j(\boldsymbol{\theta})\|_2$ shows the ℓ_2 distance of loss gradients between samples i and j,

2. λ is a hyper-parameter that determines the relative importance of LID against the gradient term.

• Intuitively, we seek data samples with a gradient similar to the clean majority of the data which have a low LID.

EXPERIMENTAL RESULTS

1. Training against Backdoor Data:

Trainir

Vanill Spectr NAD Collider

• Takeaway 1: COLLIDER can reduce the attack success rate significantly.

2. Total training time (in mins):

Metho SPECT COLLID

• **Takeaway 2**: Our method is faster than existing methods as it trains the DNN only once.

3. Ablation Study:

• **Takeaway 3**: Both the gradient space and local intrinsic dimensionality terms are crucial in the success of COLLIDER.

REFERENCES

MELBOURNE

ıg	BadNets		Label-consistent		Sinusoidal Strips	
	ACC↑	ASR↓	ACC ↑	ASR↓	ACC↑	ASR↓
a	92.19 ± 0.20	99.98 ± 0.02	92.46 ± 0.16	100	95.79 ± 0.20	77.35 ± 3.68
RE	91.28 ± 0.22	98.17 ± 1.97	91.78 ± 0.37	0.51 ± 0.15	95.41 ± 0.12	8.51 ± 7.03
)	72.19 ± 1.73	3.55 ± 1.25	70.18 ± 1.70	3.44 ± 1.50	92.41 ± 0.34	6.99 ± 3.02
(Ours)	80.66 ± 0.95	4.80 ± 1.49	82.11 ± 0.62	5.19 ± 1.08	89.74 ± 0.31	6.20 ± 3.69

od	BadNets	Label-consistent	Sinusoidal Strips
RE	85.48 ± 0.28	85.26 ± 0.26	79.46 ± 0.86
DER	62.56 ± 0.13	67.10 ± 0.95	64.53 ± 0.38

(a) Validation Accuracy

(b) Attack Success Rate

CODE AND CONTACT INFORMATION

Twitter	hmdola
Website	hmdola
GitHub	hmdol

atabadi

- latabadi.github.io
- GitHub hmdolatabadi/COLLIDER

[1] Amsaleg et al. The vulnerability of learning to adversarial perturbation increases with intrinsic dimensionality. In WIFS, 2017.

[2] Hong et al. On the effectiveness of mitigating data poisoning attacks with gradient shaping. CoRR, abs/2002.11497, 2020.

[3] Mirzasoleiman et al. Coresets for robust training of deep neural networks against noisy labels. In *NeurIPS*, 2020.

[4] Amsaleg et al. High intrinsic dimensionality facilitates adversarial attack: Theoretical evidence. IEEE TIFS, 2021.