COLLIDER: A ROBUST TRAINING FRAMEWORK FOR BACKDOOR DATA HADI M. DOLATABADI, SARAH ERFANI, AND CHRISTOPHER LECKIE SCHOOL OF COMPUTING AND INFORMATION SYSTEMS, THE UNIVERSITY OF MELBOURNE

ABSTRACT

- **Motivation**: poisoned training data can create backdoors in deep neural networks (DNN) so the model misclassifies samples with a pre-designed trigger. Existing robust methods need to train the DNN twice so they can filter out the poisoned data, but this is time-consuming.
- **Proposal**: we propose COLLIDER, a COreset selection algorithm with LocaL Intrinsic DimEnisonality Regularization, to filter out suspicious samples in an online manner and train the DNN over the clean data.

• **Key Features of COLLIDER**:

- 1. Efficient, single-run training of DNNs against backdoor data.
- 2. Compatible against various backdoor attacks.
- 3. Eliminating the effects of backdoor attacks almost entirely without requiring a clean validation set.
- Coreset selection aims at finding a *weighted subset* of the data that can approximate certain behaviors of the entire data samples.
- In particular, let us denote the behavior of interest as a function $\mathcal{B}(\cdot,\cdot)$ that receives a set and its associated weights.
- The goal of coreset selection is to move from the original data V with uniform wights 1 to a weighted subset $S^* \subseteq V$ with weights γ^* such that:

BACKGROUND: BACKDOOR ATTACKS

• By attaching a trigger to training images, attackers can create backdoors in DNNs and exploit them during inference.

(a) Training the DNN over poisoned data.

Overview of LID (based on Figure 1 in [1]). As shown, the random distance variables x and y have an approximately equal cumulative distribution at distance r. However, since the concentration of points for **y** at distance r is higher than **x**, then $\text{LID}_{F_{\mathbf{y}}}(r)$ is greater than ${\rm LID}_{F_{\bf x}}(r)$.

-
- -
	-

(b) Expected behavior at test-time in the absence and presence of the trigger.

BACKGROUND: CORESET SELECTION

2. λ is a hyper-parameter that determines the relative importance of LID against the gradient term.

BACKGROUND: LID

- Traditionally, classical expansion models such as generalized expansion dimension (GED) were used to measure the intrinsic dimensionality of the data.
- By extending the aforementioned setting into a statistical one, classical expansion models can provide a local view of intrinsic dimensionality (LID).

OUR METHOD: COLLIDER

• **Motivation**: using coreset selection to filter out the poisonous samples.

• To this end, we need to define an appropriate coreset selection objective.

• We perform this noticing two properties of the poisoned data:

1. **Gradient Space Properties**: the gradient updates computed on poisoned data (a) have comparably larger ℓ_2 norm [2], and (b) are scattered in the gradient space [3].

(a) Distribution of the neural epochs of training.

network gradient norm after 3 randomly initialized neural **(b)** t-SNE plot of a network gradient.

2. **LID Properties**: a neighborhood with higher dimensionality is needed to shelter poisoned samples compared to the clean data [4].

(b) LID distribution for a single run.

• Based on the mentioned properties of the poisoned data, we define a coreset selection objective:

$$
\mathcal{S}^*(\boldsymbol{\theta}) \in \argmin_{\mathcal{S} \subseteq \mathcal{V}, |\mathcal{S}| \leq k} \sum_{i \in \mathcal{V}} \min_{j \in \mathcal{S}} d_{ij}(\boldsymbol{\theta}) + \lambda \text{LID}(\boldsymbol{x}_j).
$$

1. $d_{ij}(\boldsymbol{\theta}) \,=\, \left\|\nabla \ell_i\left(\boldsymbol{\theta}\right) - \nabla \ell_j\left(\boldsymbol{\theta}\right)\right\|_2$ shows the ℓ_2 distance of loss gradients between samples i and j ,

- Here:
-
-
-

• Intuitively, we seek data samples with a gradient similar to the clean majority of the data which have a low LID.

EXPERIMENTAL RESULTS

1. **Training against Backdoor Data**:

Training

 $COLIDER$

• **Takeaway 1**: COLLIDER can reduce the attack success rate significantly.

2. **Total training time (in mins)**:

COLLID

• **Takeaway 2**: Our method is faster than existing methods as it trains the DNN only once.

3. **Ablation Study**:

(a) Validation Accuracy **(b)** Attack Success Rate

• **Takeaway 3**: Both the gradient space and local intrinsic dimensionality terms are crucial in the success of COLLIDER.

CODE AND CONTACT INFORMATION

REFERENCES

-
-
-
-

MELBOURNE

[1] Amsaleg et al. The vulnerability of learning to adversarial perturbation increases with intrinsic dimensionality. In *WIFS*, 2017.

[2] Hong et al. On the effectiveness of mitigating data poisoning attacks with gradient shaping. *CoRR*, abs/2002.11497, 2020.

[3] Mirzasoleiman et al. Coresets for robust training of deep neural networks against noisy labels. In *NeurIPS*, 2020.

[4] Amsaleg et al. High intrinsic dimensionality facilitates adversarial attack: Theoretical evidence. *IEEE TIFS*, 2021.