ABSTRACT

 Motivation: poisoned training data can create back-
doors in deep neural networks (DNN) so the model
misclassifies samples with a pre-designed trigger.
Existing robust methods need to train the DNN
twice so they can filter out the poisoned data, but
this is time-consuming.

 Proposal: we propose COLLIDER, a COreset selec-
tion algorithm with Local Intrinsic DimEnisonality
Regularization, to filter out suspicious samples in
an online manner and train the DNN over the clean
data.

e Key Features of COLLIDER:

. Efficient, single-run training of DNNs against
backdoor data.

. Compatible against various backdoor attacks.

3. Eliminating the effects of backdoor attacks almost
entirely without requiring a clean validation set.

BACKGROUND: BACKDOOR ATTACKS

e By attaching a trigger to training images, attackers
can create backdoors in DNNs and exploit them dur-
ing inference.

Attacker @

=

Backdoor Data .

©
S O
o . ‘ W‘%“z/‘\vz i
£ - - .,»,ezggo,g;o‘.»\( |
ﬁ 3 I "\\?/ ]
©
-E ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
A
c
©
=
Y
(a) Training the DNN over poisoned data.
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(b) Expected behavior at test-time in the absence
and presence of the trigger.

BACKGROUND: CORESET SELECTION

e (Coreset selection aims at finding a weighted subset of

the data that can approximate certain behaviors of
the entire data samples.

e In particular, let us denote the behavior of interest as

a function B(-, -) that receives a set and its associated
weights.

e The goal of coreset selection is to move from the orig-

inal data V with uniform wights 1 to a weighted sub-
set S C V with weights " such that:

>k >k

B(V,1) ~ B(S™,~7).
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BACKGROUND: LID

e Traditionally, classical expansion models such as

generalized expansion dimension (GED) were used
to measure the intrinsic dimensionality of the data.

* By extending the aforementioned setting into a sta-

tistical one, classical expansion models can provide
a local view of intrinsic dimensionality (LID).
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Overview of LID (based on Figure 1 in [1]). As shown,
the random distance variables x and y have an
approximately equal cumulative distribution at

distance . However, since the concentration of points

for y at distance r is higher than x, then LID g, (r) is
greater than LIDg,_(r).

 Motivation: using coreset selection to filter out the
poisonous samples.

e To this end, we need to define an appropriate coreset
selection objective.

 We perform this noticing two properties of the poi-
soned data:

1. Gradient Space Properties: the gradient updates
computed on poisoned data (a) have comparably
larger ¢2> norm [2], and (b) are scattered in the gra-
dient space [3].
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2. LID Properties: a neighborhood with higher di-
mensionality is needed to shelter poisoned sam-
ples compared to the clean data [4].
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* Based on the mentioned properties of the poisoned
data, we define a coreset selection objective:

S*(0) € argmin min d;; (0) + ALID () .
©) < argmin S mind,(6) + 2D (2

* Here:
1. di;(0) = [[VE; (0) — V1, (0)||, shows the /> dis-
tance of loss gradients between samples 7 and j,
2. X is a hyper-parameter that determines the rela-

tive importance of LID against the gradient term.

e Intuitively, we seek data samples with a gradient
similar to the clean majority of the data which have

a low LID.
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1. Training against Backdoor Data:
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OUR METHOD: COLLIDER EXPERIMENTAL RESULTS

BadNets Label-consistent

Sinusoidal Strips

Training
ACC? ASR | ACCY ASR | ACC? ASR |
Vanilla 92.19 £0.20 99.98 £0.02 92.46 +0.16 100 95.79 £0.20 77.35 £ 3.68
SPECTRE 91.28 £0.22 98.17£1.97 91.78 £0.37 0.51 £0.15 95.41+£0.12 8.51 +£7.03
NAD 72.19+£1.73 3.55£1.25 70.18£1.70 3.44+1.50 92.41£0.34 6.99 &+ 3.02
COLLIDER (Ours) 80.66 +£0.95 4.80+1.49 82.11£0.62 5.19+1.08 89.74+0.31 6.20 £ 3.69

e Takeaway 1: COLLIDER can reduce the attack
success rate significantly.

2. Total training time (in mins):

Method BadNets Label-consistent Sinusoidal Strips
SPECTRE  85.48 + (.28 85.26 £ 0.26 79.46 4 0.86
COLLIDER 62.56 = 0.13 67.10 £ 0.95 64.53 £ 0.38

e Takeaway 2: Our method is faster than existing
methods as it trains the DNN only once.

3. Ablation Study:

100 1

%)

Validation Acc. (
=~ D oo
e

DO
-

0

/N

e
-
(-}

S
+ LID Reg.

Attack Success Rate (%

0 20 40

(a) Validation Accuracy

60 80O 100 120

Epoch

(b) Attack Success Rate

e Takeaway 3: Both the gradient space and local
intrinsic dimensionality terms are crucial in the
success of COLLIDER.
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Twitter hmdolatabadi
Website hmdolatabadi.github.io

¥ GitHub hmdolatabadi/COLLIDER
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