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ABSTRACT

• Motivation: poisoned training data can create back-
doors in deep neural networks (DNN) so the model
misclassifies samples with a pre-designed trigger.
Existing robust methods need to train the DNN
twice so they can filter out the poisoned data, but
this is time-consuming.

• Proposal: we propose COLLIDER, a COreset selec-
tion algorithm with LocaL Intrinsic DimEnisonality
Regularization, to filter out suspicious samples in
an online manner and train the DNN over the clean
data.

• Key Features of COLLIDER:

1. Efficient, single-run training of DNNs against
backdoor data.

2. Compatible against various backdoor attacks.

3. Eliminating the effects of backdoor attacks almost
entirely without requiring a clean validation set.

BACKGROUND: BACKDOOR ATTACKS

• By attaching a trigger to training images, attackers
can create backdoors in DNNs and exploit them dur-
ing inference.
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(a) Training the DNN over poisoned data.
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(b) Expected behavior at test-time in the absence
and presence of the trigger.

• We can have different AT methods depending on
how adversarial examples are generated. Since the
network state changes during the training, each ad-
versarial example needs to be generated using the
DNN at that particular step. As such, one of the
main disadvantages of AT is its speed.

BACKGROUND: CORESET SELECTION

• Coreset selection aims at finding a weighted subset of
the data that can approximate certain behaviors of
the entire data samples.

• In particular, let us denote the behavior of interest as
a function B(·, ·) that receives a set and its associated
weights.

• The goal of coreset selection is to move from the orig-
inal data V with uniform wights 1 to a weighted sub-
set S∗ ⊆ V with weights γ∗ such that:

B(V,1) ≈ B(S∗,γ∗).

Selection
Coreset

BACKGROUND: LID
• Traditionally, classical expansion models such as

generalized expansion dimension (GED) were used
to measure the intrinsic dimensionality of the data.

• By extending the aforementioned setting into a sta-
tistical one, classical expansion models can provide
a local view of intrinsic dimensionality (LID).
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Overview of LID (based on Figure 1 in [1]). As shown,
the random distance variables x and y have an
approximately equal cumulative distribution at

distance r. However, since the concentration of points
for y at distance r is higher than x, then LIDFy (r) is

greater than LIDFx(r).

OUR METHOD: COLLIDER

• Motivation: using coreset selection to filter out the
poisonous samples.

• To this end, we need to define an appropriate coreset
selection objective.

• We perform this noticing two properties of the poi-
soned data:

1. Gradient Space Properties: the gradient updates
computed on poisoned data (a) have comparably
larger ℓ2 norm [2], and (b) are scattered in the gra-
dient space [3].

(a) Distribution of the neural
network gradient norm after 3

epochs of training.

(b) t-SNE plot of a
randomly initialized neural

network gradient.

2. LID Properties: a neighborhood with higher di-
mensionality is needed to shelter poisoned sam-
ples compared to the clean data [4].

(a) Average LID norm
across 5 seeds.

(b) LID distribution for a
single run.

• Based on the mentioned properties of the poisoned
data, we define a coreset selection objective:

S∗(θ) ∈ argmin
S⊆V,|S|≤k

∑
i∈V

min
j∈S

dij(θ) + λLID (xj) .

• Here:

1. dij(θ) = ∥∇ℓi (θ)−∇ℓj (θ)∥2 shows the ℓ2 dis-
tance of loss gradients between samples i and j,

2. λ is a hyper-parameter that determines the rela-
tive importance of LID against the gradient term.

• Intuitively, we seek data samples with a gradient
similar to the clean majority of the data which have
a low LID.

EXPERIMENTAL RESULTS

1. Training against Backdoor Data:

Training
BadNets Label-consistent Sinusoidal Strips

ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC↑ ASR ↓

Vanilla 92.19± 0.20 99.98± 0.02 92.46± 0.16 100 95.79± 0.20 77.35± 3.68

SPECTRE 91.28± 0.22 98.17± 1.97 91.78± 0.37 0.51± 0.15 95.41± 0.12 8.51± 7.03

NAD 72.19± 1.73 3.55± 1.25 70.18± 1.70 3.44± 1.50 92.41± 0.34 6.99± 3.02

COLLIDER (Ours) 80.66± 0.95 4.80± 1.49 82.11± 0.62 5.19± 1.08 89.74± 0.31 6.20± 3.69

• Takeaway 1: COLLIDER can reduce the attack
success rate significantly.

2. Total training time (in mins):

Method BadNets Label-consistent Sinusoidal Strips

SPECTRE 85.48± 0.28 85.26± 0.26 79.46± 0.86
COLLIDER 62.56± 0.13 67.10± 0.95 64.53± 0.38

• Takeaway 2: Our method is faster than existing
methods as it trains the DNN only once.

3. Ablation Study:

(a) Validation Accuracy (b) Attack Success Rate

• Takeaway 3: Both the gradient space and local
intrinsic dimensionality terms are crucial in the
success of COLLIDER.

CODE AND CONTACT INFORMATION

Twitter hmdolatabadi
Website hmdolatabadi.github.io
GitHub hmdolatabadi/COLLIDER
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